Aeruginosin 103-A, a Thrombin Inhibitor from the Cyanobacterium *Microcystis viridis*

Shinya Kodani, Keishi Ishida, and Masahiro Murakami*

Laboratory of Marine Biochemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan

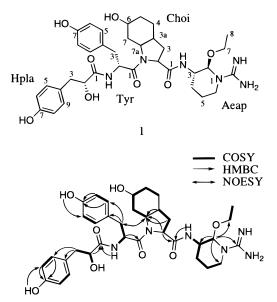
Received March 20, 1998

Aeruginosin 103-A was isolated from the cultured freshwater cyanobacterium *Microcystis viridis* (NIES-103). Its structure was elucidated to be **1** on the basis of 2D NMR data. This linear peptide inhibited thrombin, with an IC₅₀ of 9.0 μ g/mL.

The cyanobacteria *Microcystis viridis* and *Microcystis aeruginosa* are well known to produce the hepatotoxic cyclic peptides, the microcystins.¹ Recently, we have reported that thrombin inhibitors, aeruginosins 102-A and -B, were obtained from *M. viridis* (NIES-102),² and a chymotrypsin inhibitor, micropeptin 103, was isolated from *M. viridis* (NIES-103).³ In on-going studies of protease inhibitors from cyanobacteria, we have isolated a new thrombin inhibitor, aeruginosin 103-A (1), from the cultured freshwater cyanobacterium *M. viridis* (NIES-103).^{4.5} Here we describe the isolation and structure elucidation of the new thrombin inhibitor, aeruginosin 103-A (1).

The 80% MeOH extract of freeze-dried alga (119 g) was partitioned between H_2O and Et_2O . The Et_2O layer was further separated by the Kupchan procedure.⁶ The aqueous MeOH fraction, which inhibited thrombin, was subjected to ODS flash chromatography followed by reversed-phase HPLC with MeCN (20–50%) containing 0.05% TFA to yield aeruginosin 103-A (1, 4.6 mg) as a colorless amorphous powder.

The peptidic nature of 1 was suggested by its ¹H and ¹³C NMR spectra (Table 1), but only Tyr was identified by amino acid analysis of the hydrolysate. Interpretation of NMR data, including ¹H-¹H COSY, HMQC,⁷ and HMBC⁸ spectra, revealed the partial structures, Hpla (p-hydroxyphenyllactic acid), Tyr, Choi (2-carboxy-6hydroxyoctahydroindole), and Aeap (1-amidino-2-ethoxy-3-aminopiperidine) (Figure 1). Correlation between H-3a (δ 1.55) and H-4 (δ 1.23) in the Choi unit was not observed, but the similar chemical shifts of protons and carbons supported the presence of Choi (Figure 1 and Table 1) by comparison with other related peptides.² The linkage between Choi and Tyr was decided by the NOESY correlation between Choi H-7a (δ 3.62) and Tyr H-3 (δ 2.60, 2.72). The HMBC correlation from Aeap H-2 (δ 4.89) to C-6 (δ 40.0) indicated the presence of the ethoxy residue. The HMBC correlations from Aeap H-2 to C-5 (δ 19.1) and from H-2 to C=N (δ 158.0, indicating the presence of one guanidino group) established the structure of Aeap and its cyclic hemiaminal nature. All these data led to the planar structure of aeruginosin 103-A.


Table 1.	¹ H and ¹³ C	NMR Data	a for Aeru	ginosin 103	3-A in
DMSO- d_6	(δ, ppm)				

Unit		$^{1}\mathrm{H}$	<i>J</i> (Hz)	¹³ C	
Hpla	1			173.0	(s)
	2	3.99	(br)	72.0	(d)
	3	2.52	(dd, 14.1, 8.1)	39.5	(t)
	0	2.80	(dd, 14.1, 3.4)	0010	(0)
	4			128.0	(s)
	5,9	6.99	(d, 8.6)	130.2	(d)
	6,8	6.62	(d, 8.6)	115.0	(d)
	7	0.02	(u, 0.0)	155.9	(a)
	2-ОН	5.65	(br d, 5.6)	100.0	(5)
	7-OH	9.15	(s) (s)		
Tyr	1	0.10	(5)	169.5	(s)
1 yı	2	4.60	(ddd, 8.1, 7.3, 7.3)	51.6	(d)
	3				
	3	2.60	(dd, 13.3, 8.1)	38.0	(t)
	4	2.72	(dd, 13.3, 7.3)	190.0	(a)
	4	0.00	(1,0,1)	126.0	(s)
	5,9	6.90	(d, 8.1)	130.1	(d)
	6,8	6.63	(d, 8.1)	115.0	(d)
	7			156.0	(s)
	OH	9.30	(s)		
	NH	7.53	(d, 7.3)		
Choi	1			172.0	(s)
	2	4.09	(dd, 9.7, 8.1)	59.9	(d)
	3	1.67	(ddd, 12.8, 12.8, 9.7)	30.0	(t)
		1.82	(ddd, 12.8, 8.1, 5.6)		(-)
	3a	1.55	(m)	36.0	(d)
	4	1.23	(m)	18.5	(t)
	-	1.75	(m)	10.0	(0)
	5	1.31	(m)	25.9	(t)
	5	1.31	(m)	20.0	(1)
	C			63.7	(4)
	6 7	3.81	(m) (m)		(d)
	1	1.42	(m) (m)	30.3	(t)
	~	1.99	(m)	540	(1)
	7a	3.62	(ddd, 11.7, 5.9, 5.9)	54.0	(d)
Aeap	2	4.89	(br)	83.5	(d)
	3	3.90	(m)	46.0	(d)
	4	1.41	(m)	22.0	(t)
		1.92	(m)		
	5	1.48	(m)	19.1	(t)
		1.91	(m)		
	6	3.10	(ddd, 13.6, 12.8, 3.0)	40.0	(t)
		3.52	(ddd, 13.6, 4.7, 3.0)		. /
	7	3.35	(m)	62.0	(q)
	8	1.10	(iii) (t, 7.1)	14.5	(t)
	C=N	1.10	(.,)	158.0	(s)
	NH	7.79	(d, 7.7)	100.0	(3)
	INII	1.19	(u, 1.1)		

The absolute stereochemistry of Hpla was determined to be the D-form by HPLC analysis of a menthyl ester derivative of acid hydrolysate of $1.^2$ Tyr was determined to be the D-form by Marfey's analysis of the acid hydrolysate of $1.^9$ The relative stereochemistry of Aeap was determined by the NOESY spectrum and coupling

5.00 © 1998 American Chemical Society and American Society of Pharmacognosy Published on Web 06/19/1998

 $[\]ast$ To whom correspondence should be addressed. Tel.: +81-3-3812-2111 ext 5298. Fax: +81-3-5684-0622. E-mail: amura@hongo.ecc.utokyo.ac.jp.

Figure 1. COSY, HMBC, and NOESY correlations of aeruginosin 103-A.

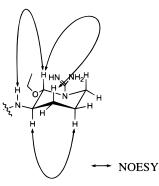


Figure 2. The relative stereochemistry of Aeap.

constants (Figure 2).¹⁰ To decide the absolute stereochemistry of Aeap, **1** was oxidized with CrO_3 . After hydrolysis with 6 N HCl, the reaction mixture afforded Arg, which was proved to be the L-form from HPLC analysis by Marfey's method. Therefore, the absolute stereochemistry of Aeap was assigned as (2*R*,3*S*)-1amidino-2-ethoxy-3-aminopiperidine. The relative stereochemistry of Choi was determined by NOESY and ROESY spectra,¹¹ which was coincident with the relative stereochemistry of Choi in aeruginosins 102-A and -B.² A study of the absolute stereochemistry of Choi is now in progress.

Aeruginosin 103-A inhibited thrombin, trypsin, and plasmin, with an IC₅₀ of 9.0, 51.0, and 68.0 μ g/mL, respectively. The X-ray crystallographic structures of the trypsin–aeruginosin 98-B complex¹² and the thrombin–aeruginosin 298-A complex¹³ have been recently reported. In the case of aeruginosin 98-B, the guanidium of agmatine was buried deeply in trypsin's specificity pocket. It is probable that the bulky argininal ethyl aminal structure of the Aeap unit in aeruginosin 103-A, compared with the linear structure of agmatine in aeruginosin 98-B, negatively affects its trypsin inhibitory activity.

Experimental Section

General Methods. The UV spectrum was recorded on a Hitachi 330 spectrophotometer. ¹H and ¹³C NMR spectra were obtained with a JEOL JNM-A500 or 600 in DMSO- d_6 at 27.0 °C. The resonances of residual DMSO- d_6 at $\delta_{\rm H}$ 2.49 and $\delta_{\rm C}$ 39.5 were used as internal references for ¹H and ¹³C NMR spectra, respectively. FABMS were recorded by a JEOL JMS SX-102 mass spectrometer. Amino acid analyses were carried out with a Hitachi L-8500A amino acid analyzer.

Culture Conditions. Microcystis viridis (NIES-103)⁵ was obtained from the NIES collection (Microbial Culture Collection, the National Institute for Environmental Studies, Japan). The alga was cultured in 10-L glass bottles containing MA medium [Ca(NO₃)₂·4 H₂O 5 mg, KNO₃ 10 mg, NaNO₃ 5 mg, Na₂SO₄ 4 mg, MgCl₂·6 H₂O 5 mg, β -Na₂glycerophosphate 10 mg, Na₂·EDTA 2 H₂O 0.5 mg, FeCl₃·6 H₂O 0.05 mg, MnCl₂·4 H₂O 0.5 mg, ZnCl₂ 0.05 mg, CoCl₂·6 H₂O 0.5 mg, Na₂MoO₄·2 H₂O 0.08 mg, H₃BO₃ 2 mg, BICINE 50 mg, distilled H₂O 100 mL, pH 8.6] under illumination of 250 μ E/m²s on a 12L: 12D cycle. After 4-8 weeks, the algal cells were harvested by continuous centrifugation at 10 000 rpm. The yield of the lyophilized cells was 119 g from 450 L of culture. The harvested cells were stored at -20 °C until extraction.

Isolation. Freeze-dried alga (119 g from 450 L of culture) was extracted with 80% MeOH (2 L \times 3) and MeOH (2 L \times 3). The combined 80% MeOH and MeOH extracts were concentrated to an aqueous suspension, and the suspension was extracted with Et₂O. The Et₂O fraction was partitioned between n-hexane and MeOH- H_2O (9:1), and the 90% MeOH layer was subsequently partitioned between CCl₄ and MeOH-H₂O (8:2).⁶ The 80% MeOH fraction was subjected to ODS flash chromatography (YMC-GEL, 5 \times 10 cm) with aqueous MeOH followed by CH₂Cl₂. The 20% MeOH fraction was subjected to reversed-phase HPLC (Cosmosil C18MS, 10×250 mm; 20% MeCN containing 0.05% TFA; flow rate, 2.0 mL/min; UV detection at 210 nm) to yield aeruginosin 103-A (1, 4.5 mg): [α]_D –7.6° (*c* 0.1, MeOH); UV absorption in H₂O at λ_{max} 224 nm (ϵ 11 600), 274 nm (2100); HRFABMS *m*/*z* 681.3633 [M + H]⁺ calcd for $C_{35}H_{48}N_6O_8 \ (\Delta +2.2 \text{ mmu}).$

HPLC Analysis of the Menthyl Ester Derivatives. L-Menthol (100 mg) and MeCN (50 μ L) were added to the acid hydrolysates (6 N HCl, 16 h) of **1**. The mixture was heated at 100 °C for 10 min, then concentrated in vacuo, diluted with MeCN, and analyzed by reversed-phase ODS-HPLC: Cosmosil 5C18AR (4.6 × 250 mm); gradient elution from MeCN-H₂O-TFA (50: 50:0.1) to MeCN-H₂O-TFA (70:30:0.1) in 30 min; UV detection 210 nm; flow rate 1.0 mL/min. Retention times of standards (min): L-Hpla (20.4), D-Hpla (21.6). Retention time of Hpla of aeruginosin 103-A (min): 21.6.

HPLC Analysis of the Marfey Derivatives of Tyr. To the acid hydrolysate (6 N HCl, 16 h) of a 100 μ g portion of **1**, 50 μ L of 1-fluoro-2,4-dinitrophenyl-5-L-alanine amide (L-FDAA) in MeCO (10 mg/mL) and 100 μ L of 1 M NaHCO₃ were added, and the reaction mixture was kept at 80 °C for 3 min. To the reaction mixture, 50 μ L of 2 N HCl and 300 μ L of 50% MeCN were added, and the reaction mixture of 2 N HCl and 300 μ L of 50% MeCN were added, and the reaction mixture was analyzed by reversed-phase ODS-HPLC: Cosmosil 5C18MS (4.6 × 250 mm); gradient elution from H₂O-TFA (100:0.1) to MeCN-H₂O-TFA (60:40:0.1) in 60 min; UV detection 340 nm; flow rate 1.0 mL/min. Retention times of the

standard amino acids (min): L-Tyr (58.4), D-Tyr (61.6). Retention time of Tyr of aeruginosin 103-A: 61.6.

Oxidation by CrO₃. Aeruginosin 103-A was dissolved in HOAc acid (500 μ L) and combined with 2 mg of CrO₃. After being stirred at room temperature for 2 h, the reaction mixture was subjected to ODS chromatography (YMC Dispo SPE, 0-60% MeOH). Arg was detected in the hydrolysate of the 60% MeOH fraction by amino acid analysis.

HPLC Analysis of Arg. The 60% MeOH fraction was hydrolyzed with 6 N HCl for 16 h and the hydrolysate was derivatized with L-FDAA as described above. The reaction mixture was analyzed by reversed-phase ODS-HPLC: Cosmosil MS (4.6 \times 250 mm); gradient elution from H₂O-TFA (100:0.1) to MeCN-H₂O-TFA (60:40:0.1) in 60 min; UV detection 340 nm; flow rate 1.0 mL/min. Retention times of the standard amino acids (min): L-Arg (36.0), D-Arg (37.2). Retention time of Arg of oxydized aeruginosin 103-A (min): 36.0.

Serine Protease Inhibitory Assay. Serine protease inhibitory activities were determined by the method described in a previous paper.¹⁴

Acknowledgment. We thank Prof. K. Yamaguchi, Tokyo University of Agriculture and Technology, for reading this manuscript and valuable discussion. This work was partly supported by a grant-in-aid for "Research for the Future". K. Ishida is financially supported by Research Fellowships of the Japan Society for the Promotion of Science for Young Scientist.

References and Notes

- Carmicheal, W. W. J. Appl. Bacteriol. 1992, 72, 445–459.
 Matsuda, H.; Okino, T.; Murakami, M.; Yamaguchi, K. Tetrahedron 1996, 52, 14501–14506.
- (3)Murakami, M.; Kodani, S.; Ishida, K.; Mastuda, H.; Yamaguchi, K. Tetrahedron Lett. 1997, 38, 3035–3038.
- (4) M. viridis (NIES-103) was obtained from the NIES-collection (Microbial Culture Collection, the National Institute for Environmental Studies, Japan) and the culture conditions were the same as previously described by Murakami et al.3
- (5) Erata, M. In GEF List of Strains '97; Microalgae and Protozoa, Global Environmental Forum; Tsukuba, Japan, 1997; p 80. Kupchan, S. M.; Britton, R. W.; Ziegler, M. F.; Sigel, C. W. J.
- (6) Org. Chem. 1973, 38, 179.
- (7)Bax, A.; Subramanian, S. J. Magn. Reson. 1986, 67, 565-569. Bax, A.; Summers, M. F. J. Am. Chem. Soc. 1986, 108, 2093-(8) 2094.
- Marfey, P. Carlsberg Res. Commun. 1984, 49, 591-596. (9)
- (10) H-6 (3.10 ppm) was indicated to be axial position by the coupling constants (ddd, 13.6, 12.8, 3.0); H-6 (3.52 ppm) was indicated to be equatorial position by the coupling constants (ddd, 12.8, 4.7, 3.0)
- (11) NOESY correlations: H-2 (4.09 ppm) to H-3 (1.82 ppm), H-3a (1.55 pcm) to (3.62 pcm), H-7a (3.62 pcm) to H-7 (1.99 pcm), H-3 (1.67 pcm) to H-4 (1.23 pcm), H-4 (1.23 pcm) to H-7 (1.99 pcm), ROESY correlation: H-3 (1.82 pcm) to H-3a (1.55 pcm),
- (12) Sandler, B.; Murakami, M.; Clardy, J. J. Am. Chem. Soc. 1998, 120, 595-596.
- (13) Steiner, J. L. R.; Murakami, M.; Tulinsky, A. J. Am. Chem. Soc. **1998**, *120*, 597–598.
- Shin, H. J.; Murakami, M.; Matsuda, H.; Yamaguchi, K. (14)Tetrahedron 1996, 52, 8159-8168.

NP980106W